技術文章
Technical articles聲學器件已從傳統(tǒng)揚聲器、麥克風等單一功能元件,發(fā)展為融合傳感、調制與執(zhí)行功能的智能系統(tǒng)。在醫(yī)療領域,聲學超表面通過調控聲波相位實現(xiàn)腫瘤靶向治療;工業(yè)場景中,MEMS聲學傳感器實時監(jiān)測設備故障頻響;消費電子領域,微型降噪麥克風陣列成為耳機的標配。其共性在于利用精密加工技術改進聲學器件,實現(xiàn)高分辨率、高通量和靈活性。微納3D打印技術具備高精度、多材料兼容等優(yōu)勢,可有效解決傳統(tǒng)聲學器件在復雜結構一體成型的難題,成為推動聲學研究突破物理制造極限,攻克技術瓶頸的關鍵一環(huán)。①聲學空間微分...
生物混合機器人通過整合生物材料的優(yōu)勢構建系統(tǒng)。伴隨三維皮膚制備技術的突破,具有皮膚覆蓋的生物混合機器人正成為下一代機器人的重要發(fā)展方向。相較于傳統(tǒng)機器人的非生物覆蓋材料,皮膚覆蓋機器人展現(xiàn)出顯著優(yōu)勢:其外觀高度擬人化,且具備類似生物組織的自修復能力——這些特性是純機械系統(tǒng)難以企及的。然而,當前技術瓶頸在于其內(nèi)部缺乏持續(xù)的水分與營養(yǎng)供給機制,導致暴露于空氣環(huán)境時表皮易迅速干燥,嚴重制約了機器人的長期運行穩(wěn)定性。盡管現(xiàn)有研究已在皮膚等效物中成功構建灌注通道,然而這些技術主要適配平...
在牙科修復日益追求微創(chuàng)、無創(chuàng)與個性化的今天,“極薄貼面”正成為行業(yè)革新的關鍵詞。摩方憑借自研的高精度微納3D打印系統(tǒng),攜手北大口腔孫玉春教授團隊,攻克極薄氧化鋯貼面的制造難題,可將牙齒貼面厚度壓縮至通體40微米,實現(xiàn)真正意義上的無創(chuàng)修復。這項跨越設備、材料與工藝極限的技術突破,不僅重新定義了齒科美學修復的技術邊界,更為全球數(shù)億對牙齒健康與美觀有訴求的患者,帶來了安全、舒適、持久的治療方案。技術突圍:用微米級精度改寫行業(yè)標準牙貼面最早于20世紀30年代出現(xiàn),作為美學修復方案用于...
血漿藥物濃度維持或波動過大,往往會導致不良的治療效果和副作用。為了在最小有效濃度和最小毒性濃度之間的治療窗口內(nèi),維持穩(wěn)定的血漿藥物濃度,臨床經(jīng)常使用靜脈滴注和給藥泵等速控釋系統(tǒng)來實現(xiàn)恒定的給藥。特別是對于半衰期短和劑量要求高的藥物更是重要。然而,當前策略的局限性在于患者依從性差和費用高昂,因其需要專業(yè)醫(yī)療設備支持,而傳統(tǒng)便攜式給藥系統(tǒng)在劑量控制與穩(wěn)定性方面難以滿足臨床需求。在小型化的控釋系統(tǒng)中配制治療藥物可以改善治療效果并提高患者的生活質量。以恒定速率釋放藥物的零訂單遞送系統(tǒng)...
微流控(Microfluidics)作為微全分析系統(tǒng)的核心載體,是一種使用微通道處理或操控微小流體的技術。伴隨其在多學科交叉融合中的深度演進,微流控光學器件已躍升為前沿技術創(chuàng)新的標志性領域。該領域通過微流控與光學器件的協(xié)同創(chuàng)新,為傳統(tǒng)光學系統(tǒng)開辟了微型化集成、陣列化構型、低成本量產(chǎn)及高精度動態(tài)調控的變革性路徑。這種微尺度下的動態(tài)光路重構,實質是微流控光學器件對傳統(tǒng)光學體系的技術創(chuàng)新迭代。作為微流控技術的核心分支之一,其依托微型化、陣列化、智能化的原生優(yōu)勢,正在重構光路設計范式...
近年來,具備可見光響應的有機功能材料,尤其是光致變色材料與室溫磷光(RTP)材料,已成為推動前沿光學應用發(fā)展的核心驅動力。盡管多數(shù)材料在紫外光照射下僅呈現(xiàn)單一功能特性,但可見光激發(fā)型功能材料的研發(fā)仍面臨嚴重短缺。近日,西北工業(yè)大學黃維院士團隊于濤教授課題組通過局域剛性設計策略與主客體策略,成功設計出三種具備可見光觸發(fā)型光致變色與室溫磷光雙重功能的三芳基乙烯材料,并采用數(shù)字光處理(DLP)3D打印技術實現(xiàn)三維結構精準制備。研究團隊通過將二苯并噻吩構建閉環(huán)態(tài)擴展π共軛體系引入三芳...
在生物工程與機器人技術的交匯點上,人類對生命本質的模仿正在改寫未來科技的邊界。新型仿生微型機器人基于跨尺度異質結構設計與智能響應材料,持續(xù)突破傳統(tǒng)器件的物理極限。但同時具備微型化、精準操控、高度集成等多物理場協(xié)同設計調控,則需通過精密制造技術實現(xiàn)創(chuàng)新迭代。傳統(tǒng)加工工藝難以兼顧精密性、功能集成性與生物相容性,微納3D打印技術兼具高精度、高穩(wěn)定性、材料兼容、快速成型等優(yōu)勢,正成為破解這一困局的核心引擎。本文通過三大標志性科研應用案例,揭示微納制造如何推動仿生微型機器人從實驗室構想...
類器官是一種能夠復現(xiàn)特定器官結構與固有功能的三維(3D)細胞培養(yǎng)模型。然而,現(xiàn)有類器官技術存在關鍵缺陷——缺乏復雜血管網(wǎng)絡,導致氧氣及必需營養(yǎng)物質的輸送受限。結合其固有的尺寸限制與代謝物累積問題,類器官難以模擬真實器官的天然復雜性,從而限制其實際應用價值。為突破這一技術瓶頸,來自南昌大學第一附屬醫(yī)院、復旦大學、摩方精密、昆明醫(yī)科大學等聯(lián)合研究團隊成功開發(fā)出可培養(yǎng)厘米級腫瘤或器官源類器官的新型培養(yǎng)平臺。該平臺通過摩方精密面投影微立體光刻(PμSL)技術3D打印定制化類器官芯片,...